Articles | Volume 8, issue 2
https://doi.org/10.5194/essd-8-571-2016
https://doi.org/10.5194/essd-8-571-2016
09 Nov 2016
 | 09 Nov 2016

The PRIMAP-hist national historical emissions time series

Johannes Gütschow, M. Louise Jeffery, Robert Gieseke, Ronja Gebel, David Stevens, Mario Krapp, and Marcia Rocha

Abstract. To assess the history of greenhouse gas emissions and individual countries' contributions to emissions and climate change, detailed historical data are needed. We combine several published datasets to create a comprehensive set of emissions pathways for each country and Kyoto gas, covering the years 1850 to 2014 with yearly values, for all UNFCCC member states and most non-UNFCCC territories. The sectoral resolution is that of the main IPCC 1996 categories. Additional time series of CO2 are available for energy and industry subsectors. Country-resolved data are combined from different sources and supplemented using year-to-year growth rates from regionally resolved sources and numerical extrapolations to complete the dataset. Regional deforestation emissions are downscaled to country level using estimates of the deforested area obtained from potential vegetation and simulations of agricultural land. In this paper, we discuss the data sources and methods used and present the resulting dataset, including its limitations and uncertainties. The dataset is available from doi:10.5880/PIK.2016.003 and can be viewed on the website accompanying this paper (http://www.pik-potsdam.de/primap-live/primap-hist/).

Download
Short summary
This paper provides the methodology for the creation of historical country-resolved time series of greenhouse gas emissions from different datasets which are individually incomplete in terms of years, gases, and/or countries. The combination of datasets is carried out using the PRIMAP model (www.primap.org). The resulting time series can be viewed interactively on www.pik-potsdam.de/primap-live. It will be used for climate policy analysis, e.g. the historical responsibility for climate change.