Journal cover Journal topic
Earth System Science Data The Data Publishing Journal
Earth Syst. Sci. Data, 9, 221-249, 2017
http://www.earth-syst-sci-data.net/9/221/2017/
doi:10.5194/essd-9-221-2017
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review article
22 Mar 2017
A high space–time resolution dataset linking meteorological forcing and hydro-sedimentary response in a mesoscale Mediterranean catchment (Auzon) of the Ardèche region, France
Guillaume Nord1, Brice Boudevillain1, Alexis Berne2, Flora Branger3, Isabelle Braud3, Guillaume Dramais3, Simon Gérard1, Jérôme Le Coz3, Cédric Legoût1, Gilles Molinié1, Joel Van Baelen4, Jean-Pierre Vandervaere1, Julien Andrieu5, Coralie Aubert1, Martin Calianno1,6, Guy Delrieu1, Jacopo Grazioli2, Sahar Hachani1,7, Ivan Horner3, Jessica Huza3,8,a, Raphaël Le Boursicaud3, Timothy H. Raupach2, Adriaan J. Teuling8, Magdalena Uber1,9, Béatrice Vincendon10, and Annette Wijbrans1 1Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
2Environmental Remote Sensing Laboratory (LTE), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
3Irstea, UR HHLY, Hydrology-Hydraulics, Villeurbanne, France
4LaMP, CNRS/UBP, Clermont Ferrand, France
5Université Côte d'Azur, CNRS, ESPACE, France
6Institut de géographie et durabilité, Université de Lausanne, Lausanne, Switzerland
7École Nationale d'Ingénieurs de Tunis, Université de Tunis, El Manar 1, Tunisia
8Hydrology and Quantitative Water Management Group, Wageningen University & Research, Wageningen, the Netherlands
9Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany
10CNRM UMR 3589 (Météo-France & CNRS), Toulouse, France
anow at: Amec Foster Wheeler Environment and Infrastructure, 1425 Route Transcanadienne, Dorval, H9P 2W9, Québec, Canada
Abstract. A comprehensive hydrometeorological dataset is presented spanning the period 1 January 2011–31 December 2014 to improve the understanding of the hydrological processes leading to flash floods and the relation between rainfall, runoff, erosion and sediment transport in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. Badlands are present in the Auzon catchment and well connected to high-gradient channels of bedrock rivers which promotes the transfer of suspended solids downstream. The number of observed variables, the various sensors involved (both in situ and remote) and the space–time resolution ( ∼  km2,  ∼  min) of this comprehensive dataset make it a unique contribution to research communities focused on hydrometeorology, surface hydrology and erosion. Given that rainfall is highly variable in space and time in this region, the observation system enables assessment of the hydrological response to rainfall fields. Indeed, (i) rainfall data are provided by rain gauges (both a research network of 21 rain gauges with a 5 min time step and an operational network of 10 rain gauges with a 5 min or 1 h time step), S-band Doppler dual-polarization radars (1 km2, 5 min resolution), disdrometers (16 sensors working at 30 s or 1 min time step) and Micro Rain Radars (5 sensors, 100 m height resolution). Additionally, during the special observation period (SOP-1) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). (ii) Other meteorological data are taken from the operational surface weather observation stations of Météo-France (including 2 m air temperature, atmospheric pressure, 2 m relative humidity, 10 m wind speed and direction, global radiation) at the hourly time resolution (six stations in the region of interest). (iii) The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations estimate water discharge at a 2–10 min time resolution. Two of these stations also measure additional physico-chemical variables (turbidity, temperature, conductivity) and water samples are collected automatically during floods, allowing further geochemical characterization of water and suspended solids. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 sensors installed in the intermittent hydrographic network continuously measures water level and water temperature in headwater subcatchments (from 0.17 to 116 km2) at a time resolution of 2–5 min. A network of soil moisture sensors enables the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, concomitant observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. Finally, this dataset is considered appropriate for understanding the rainfall variability in time and space at fine scales, improving areal rainfall estimations and progressing in distributed hydrological and erosion modelling.

DOI of the referenced dataset: doi:10.6096/MISTRALS-HyMeX.1438.


Citation: Nord, G., Boudevillain, B., Berne, A., Branger, F., Braud, I., Dramais, G., Gérard, S., Le Coz, J., Legoût, C., Molinié, G., Van Baelen, J., Vandervaere, J.-P., Andrieu, J., Aubert, C., Calianno, M., Delrieu, G., Grazioli, J., Hachani, S., Horner, I., Huza, J., Le Boursicaud, R., Raupach, T. H., Teuling, A. J., Uber, M., Vincendon, B., and Wijbrans, A.: A high space–time resolution dataset linking meteorological forcing and hydro-sedimentary response in a mesoscale Mediterranean catchment (Auzon) of the Ardèche region, France, Earth Syst. Sci. Data, 9, 221-249, doi:10.5194/essd-9-221-2017, 2017.
Download
Short summary
A high space–time resolution dataset linking hydrometeorological forcing and hydro-sedimentary response in a mesoscale catchment (Auzon, 116 km2) of the Ardèche region (France) is presented. This region is subject to precipitating systems of Mediterranean origin, which can result in significant rainfall amount. The data presented cover a period of 4 years (2011–2014) and aim at improving the understanding of processes triggering flash floods.
A high space–time resolution dataset linking hydrometeorological forcing and hydro-sedimentary...
Share