Journal metrics

Journal metrics

  • IF value: 8.792 IF 8.792
  • IF 5-year value: 8.414 IF 5-year 8.414
  • CiteScore value: 8.18 CiteScore 8.18
  • SNIP value: 2.620 SNIP 2.620
  • SJR value: 4.885 SJR 4.885
  • IPP value: 7.67 IPP 7.67
  • h5-index value: 28 h5-index 28
  • Scimago H index value: 24 Scimago H index 24
Volume 10, issue 3 | Copyright
Earth Syst. Sci. Data, 10, 1591-1603, 2018
https://doi.org/10.5194/essd-10-1591-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Review article 03 Sep 2018

Review article | 03 Sep 2018

Estimating the thickness of unconsolidated coastal aquifers along the global coastline

Daniel Zamrsky1, Gualbert H. P. Oude Essink1,2, and Marc F. P. Bierkens1,2 Daniel Zamrsky et al.
  • 1Department of Physical geography, Utrecht University, Utrecht, the Netherlands
  • 2Deltares, Utrecht, the Netherlands

Abstract. Knowledge of aquifer thickness is crucial for setting up numerical groundwater flow models to support groundwater resource management and control. Fresh groundwater reserves in coastal aquifers are particularly under threat of salinization and depletion as a result of climate change, sea-level rise, and excessive groundwater withdrawal under urbanization. To correctly assess the possible impacts of these pressures we need better information about subsurface conditions in coastal zones. Here, we propose a method that combines available global datasets to estimate, along the global coastline, the aquifer thickness in areas formed by unconsolidated sediments. To validate our final estimation results, we collected both borehole and literature data. Additionally, we performed a numerical modelling study to evaluate the effects of varying aquifer thickness and geological complexity on simulated saltwater intrusion. The results show that our aquifer thickness estimates can indeed be used for regional-scale groundwater flow modelling but that for local assessments additional geological information should be included. The final dataset has been made publicly available (https://doi.pangaea.de/10.1594/PANGAEA.880771).

Download & links
Download
Short summary
An increasing number of coastal areas worldwide are facing a threat of groundwater quality degradation by saltwater intrusion. Groundwater flow models help to get a better idea of the volumes of fresh groundwater reserves in these areas. Our research provides information on aquifer thickness, which is one of the most important parameters for such models. However, we found that geological complexity of coastal aquifer systems is at least equally as important a factor for accurate predictions.
An increasing number of coastal areas worldwide are facing a threat of groundwater quality...
Citation
Share