Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

Journal metrics

  • IF value: 10.951 IF 10.951
  • IF 5-year value: 9.899 IF 5-year
    9.899
  • CiteScore value: 9.74 CiteScore
    9.74
  • SNIP value: 3.111 SNIP 3.111
  • IPP value: 8.99 IPP 8.99
  • SJR value: 5.229 SJR 5.229
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 38 Scimago H
    index 38
  • h5-index value: 33 h5-index 33
ESSD | Articles | Volume 10, issue 3
Earth Syst. Sci. Data, 10, 1637–1653, 2018
https://doi.org/10.5194/essd-10-1637-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Syst. Sci. Data, 10, 1637–1653, 2018
https://doi.org/10.5194/essd-10-1637-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Review article 11 Sep 2018

Review article | 11 Sep 2018

Weekly water quality monitoring data for the River Thames (UK) and its major tributaries (2009–2013): the Thames Initiative research platform

Michael J. Bowes et al.

Related authors

Using high-frequency water quality data to assess sampling strategies for the EU Water Framework Directive
R. A. Skeffington, S. J. Halliday, A. J. Wade, M. J. Bowes, and M. Loewenthal
Hydrol. Earth Syst. Sci., 19, 2491–2504, https://doi.org/10.5194/hess-19-2491-2015,https://doi.org/10.5194/hess-19-2491-2015, 2015
Short summary
The Catchment Runoff Attenuation Flux Tool, a minimum information requirement nutrient pollution model
R. Adams, P. F. Quinn, and M. J. Bowes
Hydrol. Earth Syst. Sci., 19, 1641–1657, https://doi.org/10.5194/hess-19-1641-2015,https://doi.org/10.5194/hess-19-1641-2015, 2015
Short summary
Modelling and monitoring nutrient pollution at the large catchment scale: the implications of sampling regimes on model performance
R. Adams, P. F. Quinn, and M. J. Bowes
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10161-2013,https://doi.org/10.5194/hessd-10-10161-2013, 2013
Preprint withdrawn

Related subject area

Hydrology and Soil Science – Hydrology
A distributed soil moisture, temperature and infiltrometer dataset for permeable pavements and green spaces
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Earth Syst. Sci. Data, 12, 501–517, https://doi.org/10.5194/essd-12-501-2020,https://doi.org/10.5194/essd-12-501-2020, 2020
Short summary
A 439-year simulated daily discharge dataset (1861–2299) for the upper Yangtze River, China
Chao Gao, Buda Su, Valentina Krysanova, Qianyu Zha, Cai Chen, Gang Luo, Xiaofan Zeng, Jinlong Huang, Ming Xiong, Liping Zhang, and Tong Jiang
Earth Syst. Sci. Data, 12, 387–402, https://doi.org/10.5194/essd-12-387-2020,https://doi.org/10.5194/essd-12-387-2020, 2020
Short summary
Runoff reaction from extreme rainfall events on natural hillslopes: a data set from 132 large-scale sprinkling experiments in south-western Germany
Fabian Ries, Lara Kirn, and Markus Weiler
Earth Syst. Sci. Data, 12, 245–255, https://doi.org/10.5194/essd-12-245-2020,https://doi.org/10.5194/essd-12-245-2020, 2020
Short summary
Paleo-hydrologic reconstruction of 400 years of past flows at a weekly time step for major rivers of Western Canada
Andrew R. Slaughter and Saman Razavi
Earth Syst. Sci. Data, 12, 231–243, https://doi.org/10.5194/essd-12-231-2020,https://doi.org/10.5194/essd-12-231-2020, 2020
Short summary
Global River Radar Altimetry Time Series (GRRATS): new river elevation earth science data records for the hydrologic community
Stephen Coss, Michael Durand, Yuchan Yi, Yuanyuan Jia, Qi Guo, Stephen Tuozzolo, C. K. Shum, George H. Allen, Stéphane Calmant, and Tamlin Pavelsky
Earth Syst. Sci. Data, 12, 137–150, https://doi.org/10.5194/essd-12-137-2020,https://doi.org/10.5194/essd-12-137-2020, 2020
Short summary

Cited articles

Amos, G. C. A., Gozzard, E., Carter, C. E., Mead, A., Bowes, M. J., Hawkey, P. M., Zhang, L., Singer, A. C., Gaze, W. H., and Wellington, E. M. H.: Validated predictive modelling of the environmental resistome, ISME J., 9, 1467–1476, https://doi.org/10.1038/ismej.2014.237, 2015. 
Bell, V. A., Kay, A. L., Cole, S. J., Jones, R. G., Moore, R. J., and Reynard, N. S.: How might climate change affect river flows across the Thames Basin? An area-wide analysis using the UKCP09 Regional Climate Model ensemble, J. Hydrol., 442–443, 89–104, 2012. 
Bowes, M. J., Smith, J. T., Jarvie, H. P., and Neal, C.: Modelling of phosphorus inputs to rivers from diffuse and point sources, Sci. Total Environ., 395, 125–138, 2008. 
Bowes, M. J., Smith, J. T., and Neal, C.: The value of high-resolution nutrient monitoring: A case study of the River Frome, Dorset, UK, J. Hydrol., 378, 82–96, 2009. 
Bowes, M. J., Lehmann, K., Jarvie, H. P., and Singer, A. C.: Investigating periphyton response to changing phosphorus concentrations in UK rivers using within-river flumes. In: BHS Third International Symposium, Managing Consequences of a Changing Global Environment, Newcastle-upon-Tyne, 2010. 
Download
Short summary
The water quality of the River Thames (UK) and its major tributaries has been monitored at weekly intervals since 2009. This monitoring captures changes in the water quality during a period of rapid change, related to increasing pressures (due to growing human population, increasing water demand, and climate change) and improvements in sewage treatment and agricultural practices. This study has shown that improvements in water quality have been principally due to sewage treatment improvements.
The water quality of the River Thames (UK) and its major tributaries has been monitored at...
Citation