Articles | Volume 10, issue 4
https://doi.org/10.5194/essd-10-1795-2018
https://doi.org/10.5194/essd-10-1795-2018
09 Oct 2018
 | 09 Oct 2018

Spatially distributed water-balance and meteorological data from the rain–snow transition, southern Sierra Nevada, California

Roger Bales, Erin Stacy, Mohammad Safeeq, Xiande Meng, Matthew Meadows, Carlos Oroza, Martha Conklin, Steven Glaser, and Joseph Wagenbrenner

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Download
Short summary
Strategically placed, spatially distributed sensors provide representative measures of changes in snowpack and subsurface water storage, plus the fluxes affecting these stores, in a set of nested headwater catchments. We present 8 years of hourly snow-depth, soil-moisture, and soil-temperature data from hundreds of sensors, as well as 14 years of streamflow and meteorological data that detail processes at the rain–snow transition at Providence Creek in the southern Sierra Nevada, California.