Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

Journal metrics

  • IF value: 8.792 IF 8.792
  • IF 5-year value: 8.414 IF 5-year 8.414
  • CiteScore value: 8.18 CiteScore 8.18
  • SNIP value: 2.620 SNIP 2.620
  • SJR value: 4.885 SJR 4.885
  • IPP value: 7.67 IPP 7.67
  • h5-index value: 28 h5-index 28
  • Scimago H index value: 24 Scimago H index 24
Volume 10, issue 4
Earth Syst. Sci. Data, 10, 1943-1957, 2018
https://doi.org/10.5194/essd-10-1943-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Syst. Sci. Data, 10, 1943-1957, 2018
https://doi.org/10.5194/essd-10-1943-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  22 Oct 2018

22 Oct 2018

Radiocarbon measurements of ecosystem respiration and soil pore-space CO2 in Utqiaġvik (Barrow), Alaska

Lydia J. S. Vaughn1,2 and Margaret S. Torn2,3 Lydia J. S. Vaughn and Margaret S. Torn
  • 1Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
  • 2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
  • 3Energy and Resources Group, University of California, Berkeley, Berkeley, CA 94720, USA

Abstract. Radiocarbon measurements of ecosystem respiration and soil pore space CO2 are useful for determining the sources of ecosystem respiration, identifying environmental controls on soil carbon cycling rates, and parameterizing and evaluating models of the carbon cycle. We measured flux rates and radiocarbon content of ecosystem respiration, as well as radiocarbon in soil profile CO2 in Utqiaġvik (Barrow), Alaska, during the summers of 2012, 2013, and 2014. We found that radiocarbon in ecosystem respiration (Δ14CReco) ranged from +60.5 to −160‰ with a median value of +23.3‰. Ecosystem respiration became more depleted in radiocarbon from summer to autumn, indicating increased decomposition of old soil organic carbon and/or decreased CO2 production from fast-cycling carbon pools. Across permafrost features, ecosystem respiration from high-centered polygons was depleted in radiocarbon relative to other polygon types. Radiocarbon content in soil pore-space CO2 varied between −7.1 and −280‰, becoming more negative with depth in individual soil profiles. These pore-space radiocarbon values correspond to CO2 mean ages of 410 to 3350 years, based on a steady-state, one-pool model. Together, these data indicate that deep soil respiration was derived primarily from old, slow-cycling carbon, but that total CO2 fluxes depended largely on autotrophic respiration and heterotrophic decomposition of fast-cycling carbon within the shallowest soil layers. The relative contributions of these different CO2 sources were highly variable across microtopographic features and time in the sampling season. The highly negative Δ14C values in soil pore-space CO2 and autumn ecosystem respiration indicate that when it is not frozen, very old soil carbon is vulnerable to decomposition. Radiocarbon data and associated CO2 flux and temperature data are stored in the data repository of the Next Generation Ecosystem Experiments (NGEE-Arctic) at http://dx.doi.org/10.5440/1364062 and https://doi.org/10.5440/1418853.

Download
Short summary
This paper discusses radiocarbon in CO2 and soil organic carbon from Arctic Alaska. From soil chamber measurements, we observed strong seasonal and spatial patterns in 14C of ecosystem respiration, which declined throughout the summer and differed among permafrost features. Radiocarbon in pore-space CO2 indicated decomposition of carbon as old as 3000 years near the permafrost table. Together, these data reveal different rates of old carbon decomposition from distinct permafrost features.
This paper discusses radiocarbon in CO2 and soil organic carbon from Arctic Alaska. From soil...
Citation
Share