Supplement of

OCTOPUS: an open cosmogenic isotope and luminescence database

Alexandru T. Codilean et al.

Correspondence to: Alexandru T. Codilean (codilean@uow.edu.au)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
TABLE S1: Description of CRN attribute table entries
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Type & Units</th>
<th>Values</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of data and version information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMPID1</td>
<td>String</td>
<td>[S###WTS###]</td>
<td>S101WTS001</td>
<td>Unique sample identifier provided as part of the compilation</td>
</tr>
<tr>
<td>SMPID2</td>
<td>String</td>
<td>[Sample Name]</td>
<td>Achina</td>
<td>Original sample identifier (as published)</td>
</tr>
<tr>
<td>IGSNID</td>
<td>String</td>
<td>[IGSN Sample Name] or NA – for not applicable</td>
<td>NA</td>
<td>Placeholder for International Geo Sample Number unique ID. Not in use and set by default to NA</td>
</tr>
<tr>
<td>STUDYID</td>
<td>String</td>
<td>[S###]</td>
<td>S101</td>
<td>Unique study identifier provided as part of the compilation</td>
</tr>
<tr>
<td>AUTH</td>
<td>String</td>
<td>[Author Name]</td>
<td>Munack</td>
<td>Last name of lead author</td>
</tr>
<tr>
<td>PUBYEAR</td>
<td>Integer</td>
<td>[YYYY] – for published data or 9999 – for data not published</td>
<td>2014</td>
<td>Year of publication</td>
</tr>
<tr>
<td>REFID</td>
<td>String</td>
<td>[Abbrev_Publ_Name_Vol] or PhD_Thesis MSc_Thesis Hons_Thesis Not_Published</td>
<td>Geol_Soc_Am_Bull_126</td>
<td>Abbreviated name of journal and volume number, or type of publication (i.e., PhD thesis Master thesis, etc.)</td>
</tr>
<tr>
<td>REFDOI</td>
<td>String</td>
<td>[DOI String] – where available or ND – for no data or NA – for not applicable</td>
<td>10.1130/B30979.1</td>
<td>Digital object identifier (DOI) where available</td>
</tr>
<tr>
<td>DBDOI</td>
<td>String</td>
<td>[DOI String]</td>
<td>10.4225/48/Sa8367feac9b2</td>
<td>Digital object identifier (DOI) of the CRN sub-collection as provided by UOW Library</td>
</tr>
<tr>
<td>DBVER</td>
<td>Integer</td>
<td>[YYYY]</td>
<td>2017</td>
<td>Version of the sub-collection. The year when version with DOI provided in DBDOI was published online</td>
</tr>
<tr>
<td>Location of sample site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASIN</td>
<td>String</td>
<td>[Name] or ND – for no data</td>
<td>Upper Indus</td>
<td>River basin from where sample is from; Use name of river or stream sampled; If not available, use name of higher order stream or river</td>
</tr>
<tr>
<td>AHGFL1</td>
<td>String</td>
<td>CC – Carpentaria Coast LEB – Lake Eyre Basin MDB – Murray-Darling Basin NEC – North East Coast</td>
<td>NA</td>
<td>Geofabric AHGF river region code. Only used for data from Australia</td>
</tr>
</tbody>
</table>
AHGFL2

| String | [AHGFCode##] or NA – for basins outside Australia | NA | Geofabric AHGF combined river region code (AHGLF1) and topographic drainage division two-digit number; Only used for data from Australia |

REGION

| String | [Name] or ND – for no data | Himalaya | Name of the study region; This might be the name of a drainage basin, mountain range, geographic region, or administrative region, etc. |

CNTRY

| String | [ISO Code] | IND | ISO 3-letter country code from where sample is from |

X_WGS84

| Float [decimal degree] | [value; six decimal places] | 76.630114 | WGS84 longitude of sample site as identified on the DEM (N.B. not necessarily the published X coordinate) |

Y_WGS84

| Float [decimal degree] | [value; six decimal places] | 34.504037 | WGS84 latitude of sample site as identified on the DEM (N.B. not necessarily the published Y coordinate) |

Type of material sampled

| Integer | 1 – sand 2 – gravel 3 – mix of sand and gravel 9 – other grain size 0 – no data | 1 | Type of material sampled |

SIZEMIN

| Integer [micron] | [size in microns] or 0 – for no data | 125 | Minimum grain size sampled |

SIZEMAX

| Integer [micron] | [size in microns] or 0 – for no data | 500 | Maximum grain size sampled |

Cosmogenic Be-10 data
<table>
<thead>
<tr>
<th>BE10NP</th>
<th>Integer [atoms.g⁻¹]</th>
<th>([\text{value}]) or (-9999 – \text{for not data})</th>
<th>723742</th>
<th>Published Be-10 concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE10NP_ERR</td>
<td>Integer [atoms.g⁻¹]</td>
<td>([\text{value}]) or (-9999 – \text{for not data})</td>
<td>24087</td>
<td>Published 1-sigma uncertainty in Be-10 concentration</td>
</tr>
<tr>
<td>BE10EP</td>
<td>Float [mm.kyr⁻¹]</td>
<td>([\text{value}; \text{two decimal places}]) or (-9999.99 – \text{for not data})</td>
<td>62.91</td>
<td>Published Be-10 denudation rate</td>
</tr>
<tr>
<td>BE10EP_ERR</td>
<td>Float [mm.kyr⁻¹]</td>
<td>([\text{value}; \text{two decimal places}]) or (-9999.99 – \text{for not data})</td>
<td>5.45</td>
<td>Published 1-sigma uncertainty in Be-10 denudation rate</td>
</tr>
<tr>
<td>BESTND</td>
<td>String</td>
<td>07KNSTD, KNSTD, NIST_Cert, NIST_30000, NIST_30200, NIST_30300, NIST_30600, NIST_27900, BEST433, S555, S2007, BEST433N, S555N, S2007N, STD11, LLNL31000, LLNL10000, LLNL3000, LLNL1000, LLNL300, ND – when standard info not provided (KNSTD assumed), NA – when not applicable</td>
<td>S2007N</td>
<td>Name of AMS Be standardisation used; When information is not provided, it is assumed that authors used the KNSTD standardisation as this is was the most commonly used standardisation prior to 2007 at AMS labs in the United States</td>
</tr>
<tr>
<td>BEAMS</td>
<td>String</td>
<td>[name]</td>
<td>ETH-Zuerich</td>
<td>Name of AMS where measurements where done</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ND – when not provided</td>
<td>NA – when not applicable</td>
<td></td>
</tr>
<tr>
<td>BE10NC</td>
<td>Integer</td>
<td>[value]</td>
<td>723742</td>
<td>Be-10 concentration normalised to 07KNSTD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or -9999 – for not data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE10NC_ERR</td>
<td>Integer</td>
<td>[value]</td>
<td>24087</td>
<td>Uncertainty in Be-10 concentration normalised to 07KNSTD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or -9999 – for not data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cosmogenic Al-26 data

<table>
<thead>
<tr>
<th>AL26NP</th>
<th>Integer</th>
<th>[value]</th>
<th>-9999</th>
<th>Published Al-26 concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>or -9999 – for not data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL26NP_ERR</td>
<td>Integer</td>
<td>[value]</td>
<td>-9999</td>
<td>Published 1-sigma uncertainty in Al-26 concentration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or -9999 – for not data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL26EP</td>
<td>Float</td>
<td>[value; two decimal places]</td>
<td>-9999.99</td>
<td>Published Al-26 denudation rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or -9999.99 – for not data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL26EP_ERR</td>
<td>Float</td>
<td>[value; two decimal places]</td>
<td>-9999.99</td>
<td>Published 1-sigma uncertainty in Al-26 denudation rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or -9999.99 – for not data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALSTND</td>
<td>String</td>
<td>KNSTD</td>
<td>NA</td>
<td>Name of AMS Al standardisation used; When information is not provided, it is assumed that authors used the KNSTD standardisation as this is the most common standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZAL94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZAL94N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Type</td>
<td>Description</td>
<td>Value</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>ALCORR</td>
<td>Float</td>
<td>Correction factor for renormalising Al-26 concentration and uncertainty to KNSTD standard</td>
<td>-9.999</td>
<td></td>
</tr>
<tr>
<td>ALAMS</td>
<td>String</td>
<td>Name of AMS where measurements where done</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>AL26NC</td>
<td>Integer</td>
<td>Al-26 concentration normalised to KNSTD</td>
<td>-9999</td>
<td></td>
</tr>
<tr>
<td>AL26NC_ERR</td>
<td>Integer</td>
<td>Uncertainty in Al-26 concentration normalised to KNSTD</td>
<td>-9999</td>
<td></td>
</tr>
<tr>
<td>DENUDATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETOPO</td>
<td>Float</td>
<td>CAIRN average topographic shielding correction for the basin</td>
<td>0.964</td>
<td></td>
</tr>
<tr>
<td>BESNOW</td>
<td>Float</td>
<td>CAIRN average snow shielding correction for the basin</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>BETTOTAL</td>
<td>Float</td>
<td>CAIRN average combined shielding and scaling correction for the basin</td>
<td>15.606</td>
<td></td>
</tr>
</tbody>
</table>

SMAL11
Z92-0222

ND – when standard info not provided (KNSTD assumed)
NA – when not applicable

AL26NC
[atoms.g^-1]

ND – when not provided
NA – when not applicable

AL26NC_ERR
[atoms.g^-1]

ND – when not provided
NA – when not applicable

BEPROD | Float | CAIRN average production scaling correction for the basin | 16.148 | |
BETOPO	Float	CAIRN average topographic shielding correction for the basin	0.964	
BESELF	Float	CAIRN average self shielding correction for the basin	1.000	
BESNOW	Float	CAIRN average snow shielding correction for the basin	1.000	
BETTOTAL	Float	CAIRN average combined shielding and scaling correction for the basin	15.606	

Denudation rate calculations using Be-10
<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBE_GCMYR</td>
<td>Float</td>
<td>[g.cm^-2.yr^-1]</td>
<td>CAIRN Be-10 denudation rate in mass per unit area</td>
</tr>
<tr>
<td></td>
<td>[value; five decimal places]</td>
<td>or -9.99999 – for not data</td>
<td></td>
</tr>
<tr>
<td>ERRBE_AMS</td>
<td>Float</td>
<td>[g.cm^-2.yr^-1]</td>
<td>CAIRN Be-10 denudation rate uncertainty at 1-sigma level in mass per unit area derived from AMS uncertainty</td>
</tr>
<tr>
<td></td>
<td>[value; five decimal places]</td>
<td>or -9.99999 – for not data</td>
<td></td>
</tr>
<tr>
<td>ERRBE_MUON</td>
<td>Float</td>
<td>[g.cm^-2.yr^-1]</td>
<td>CAIRN Be-10 denudation rate uncertainty at 1-sigma level in mass per unit area derived from muon uncertainty</td>
</tr>
<tr>
<td></td>
<td>[value; five decimal places]</td>
<td>or -9.99999 – for not data</td>
<td></td>
</tr>
<tr>
<td>ERRBE_PROD</td>
<td>Float</td>
<td>[g.cm^-2.yr^-1]</td>
<td>CAIRN Be-10 denudation rate uncertainty at 1-sigma level in mass per unit area derived from uncertainty in the production rate</td>
</tr>
<tr>
<td></td>
<td>[value; five decimal places]</td>
<td>or -9.99999 – for not data</td>
<td></td>
</tr>
<tr>
<td>ERRBE_TOT</td>
<td>Float</td>
<td>[g.cm^-2.yr^-1]</td>
<td>CAIRN Be-10 denudation rate uncertainty at 1-sigma level in mass per unit area that combines all uncertainties</td>
</tr>
<tr>
<td></td>
<td>[value; five decimal places]</td>
<td>or -9.99999 – for not data</td>
<td></td>
</tr>
<tr>
<td>EBE_MMKYR</td>
<td>Float</td>
<td>[mm.kyr^-1]</td>
<td>CAIRN Be-10 denudation rate calculated assuming density of 2650 kg.m^-3</td>
</tr>
<tr>
<td></td>
<td>[value; two decimal places]</td>
<td>or -9999.99 – for not data</td>
<td></td>
</tr>
<tr>
<td>EBE_ERR</td>
<td>Float</td>
<td>[mm.kyr^-1]</td>
<td>CAIRN Be-10 denudation rate uncertainty at 1-sigma level calculated assuming density of 2650 kg.m^-3</td>
</tr>
<tr>
<td></td>
<td>[value; two decimal places]</td>
<td>or -9999.99 – for not data</td>
<td></td>
</tr>
</tbody>
</table>

Denudation rate calculations using Al-26

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPROD</td>
<td>Float</td>
<td>[dimensionless]</td>
<td>CAIRN average production scaling correction for the basin</td>
</tr>
<tr>
<td></td>
<td>[value; three decimal places]</td>
<td>or -9.999</td>
<td></td>
</tr>
<tr>
<td>ALTOPO</td>
<td>Float</td>
<td>[dimensionless]</td>
<td>CAIRN average topographic shielding correction for the basin</td>
</tr>
<tr>
<td></td>
<td>[value; three decimal places]</td>
<td>or -9.999</td>
<td></td>
</tr>
<tr>
<td>ALSELF</td>
<td>Float</td>
<td>[dimensionless]</td>
<td>CAIRN average self shielding correction for the basin</td>
</tr>
<tr>
<td></td>
<td>[value; three decimal places]</td>
<td>or -9.999</td>
<td></td>
</tr>
<tr>
<td>ALSNOW</td>
<td>Float</td>
<td>[dimensionless]</td>
<td>CAIRN average snow shielding correction for the basin</td>
</tr>
<tr>
<td></td>
<td>[value; three decimal places]</td>
<td>or -9.999</td>
<td></td>
</tr>
<tr>
<td>ALTOTS</td>
<td>Float</td>
<td>[dimensionless]</td>
<td>CAIRN average combined shielding and scaling correction for the basin</td>
</tr>
<tr>
<td></td>
<td>[value; three decimal places]</td>
<td>or -99.999</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Type</td>
<td>Value Details</td>
<td>Value</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>EAL_GCMYR</td>
<td>Float</td>
<td>[g.cm(^{-2}).yr(^{-1})] or -9.99999 – for not data</td>
<td>-9.99999</td>
</tr>
<tr>
<td>ERRAL_AMS</td>
<td>Float</td>
<td>[g.cm(^{-2}).yr(^{-1})] or -9.99999 – for not data</td>
<td>-9.99999</td>
</tr>
<tr>
<td>ERRAL_MUON</td>
<td>Float</td>
<td>[g.cm(^{-2}).yr(^{-1})] or -9.99999 – for not data</td>
<td>-9.99999</td>
</tr>
<tr>
<td>ERRAL_PROD</td>
<td>Float</td>
<td>[g.cm(^{-2}).yr(^{-1})] or -9.99999 – for not data</td>
<td>-9.99999</td>
</tr>
<tr>
<td>ERRAL_TOT</td>
<td>Float</td>
<td>[g.cm(^{-2}).yr(^{-1})] or -9.99999 – for not data</td>
<td>-9.99999</td>
</tr>
<tr>
<td>EAL_MMKRY</td>
<td>Float</td>
<td>[mm.kyr(^{-1})] or -9999.99 – for not data</td>
<td>-9999.99</td>
</tr>
<tr>
<td>EAL_ERR</td>
<td>Float</td>
<td>[mm.kyr(^{-1})] or -9999.99 – for not data</td>
<td>-9999.99</td>
</tr>
</tbody>
</table>

Topographic parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Value Details</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECTION</td>
<td>String</td>
<td>[name]</td>
<td>WGS84 UTM_44N</td>
<td>Name of projected coordinate system used for calculations</td>
</tr>
<tr>
<td>AREA</td>
<td>Float</td>
<td>[km(^{2})]</td>
<td>65.41</td>
<td>Basin area as calculated from projected DEM</td>
</tr>
<tr>
<td>ELEV_AVE</td>
<td>Float</td>
<td>[m]</td>
<td>4449.06</td>
<td>Mean elevation of basin as calculated from projected DEM</td>
</tr>
<tr>
<td>ELEV_STD</td>
<td>Float</td>
<td>[m]</td>
<td>597.93</td>
<td>Standard deviation of elevation of basin as calculated from projected DEM</td>
</tr>
<tr>
<td>SLP_AVE</td>
<td>Float</td>
<td>[m.km(^{-1})]</td>
<td>512.30</td>
<td>Mean slope gradient of basin as calculated from projected DEM</td>
</tr>
<tr>
<td>SLP_STD</td>
<td>Float</td>
<td>[m.km(^{-1})]</td>
<td>181.90</td>
<td>Standard deviation of slope gradient of basin as calculated from projected DEM</td>
</tr>
</tbody>
</table>
TABLE S2: Description of OSL/TL attribute table entries
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Type & Units</th>
<th>Values</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPID1</td>
<td>String</td>
<td>[L###TL###] – for TL [L###OSL###] – for OSL</td>
<td>L139OSL001</td>
<td>Unique sample identifier provided as part of the compilation</td>
</tr>
<tr>
<td>SMPID2</td>
<td>String</td>
<td>[Sample Name]</td>
<td>NR99001</td>
<td>Original sample identifier (as published)</td>
</tr>
<tr>
<td>IGSNID</td>
<td>String</td>
<td>[IGSN Sample Name] or NA – for not applicable</td>
<td>NA</td>
<td>Placeholder for International Geo Sample Number unique ID. Not in use and set by default to NA</td>
</tr>
<tr>
<td>STUDYID</td>
<td>String</td>
<td>[S###]</td>
<td>L139</td>
<td>Unique study identifier provided as part of the compilation</td>
</tr>
<tr>
<td>AUTH</td>
<td>String</td>
<td>[Author Name]</td>
<td>Eriksson</td>
<td>Surname of the first author of the publication/thesis author</td>
</tr>
<tr>
<td>PUBYEAR</td>
<td>Integer</td>
<td>[YYYY] – Year or 9999 – for data not published</td>
<td>2006</td>
<td>Year of the publication</td>
</tr>
<tr>
<td>REFID</td>
<td>String</td>
<td>[Abbrev_Publ_Name_Vol] or PhD_Thesis MSc_Thesis Hons_Thesis Not_Published Report_Published Report_Unpublished</td>
<td>Geomorphology_81</td>
<td>Abbreviated name of journal and volume number, or type of publication (i.e., PhD thesis Master thesis, etc.)</td>
</tr>
<tr>
<td>DBDOI</td>
<td>String</td>
<td>[DOI String]</td>
<td>10.4225/48/5a836db1ac9b6</td>
<td>Digital object identifier (DOI) of the TL-OSL sub-collection as provided by UOW Library</td>
</tr>
<tr>
<td>DBVER</td>
<td>Integer</td>
<td>[YYYY]</td>
<td>2017</td>
<td>Version of the sub-collection. The year when version with DOI provided in DBDOI was published online</td>
</tr>
</tbody>
</table>

Location of sample site

| BASIN | String | [Name] or ND – for no data | Murrumbidgee River | River basin from where sample is from; Use name of river or stream sampled; If not available, use name of higher order stream or river |
| AHGFL1 | String | CC – Carpentaria Coast
LEB – Lake Eyre Basin
MDB – Murray-Darling Basin
NEC – North East Coast
NWP – North Western Plateau
PG – Pilbara-Gascoyne
SAG – South Australian Gulf
SEN – South East Coast NSW
SEV – South East Coast VIC
SWC – South West Coast
SWP – South Western Plateau
TAS – Tasmania
TTS – Tanami-Timor Sea Coast | MDB | Geofabric AHGF river region code. |
| AHGFL2 | String | [AHGFCode##]
or
NA – for basins outside Australia | MDB12 | Geofabric AHGF combined river region code (AHGLF1) and topographic drainage division two-digit number |
| X_WGS84 | Float | [value; six decimal places]
or
-999 – no data | 149.074222 | WGS84 latitude of sample site |
| Y_WGS84 | Float | [value; six decimal places]
or
-999 – no data | -35.678042 | WGS84 longitude of sample site |
| CORDS | String | ORG – originally published coordinates
INTP – coordinates interpolated from the published map
BAS – coordinates of river channel nearest to the sample site as identified on the DEM
or
ND – no data | INTP | Source of coordinates for the sample site |
| SITENAME1 | String | [Name]
or
ND – for no data | Naas River | Name of the site, first degree such as name of the river |
| SITENAME2 | String | [Name]
or
ND – for no data | ND | Name of the site, second degree such as locality along the river |
<p>| SITENAME3 | String | [Name] | Terrace 3 | Outcrop name or number of the site/trench/core |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geomorphological features and facies, and type of material sampled</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **GEOTYPE** | Integer | 1 – Terrace
2 – Floodplain
3 – Alluvial Fan
4 – Bench
5 – Island
6 – Slack Water Deposit
7 – Levee
0 – No data | 1 | Geomorphological type of feature sampled |
| **FACIES** | Integer | 1 - Channel
2 - Overbank
0 – No data | 1 | Sedimentological facies type |
| **SITETYPE** | String | Outcrop
Core
Auger hole
Pit or Quarry
Artificial excavation (trench)
or
Unknown | Artificial excavation | Type of the site from which samples were extracted |
| **SITETCODE** | Integer | 1 – Outcrop
2 – Core
3 – Auger hole
5 – Pit or Quarry
6 – Artificial excavation
9 - Unknown | 6 | Numerical code assigned to each SITETYPE option |
| **DEPTHICK** | Float
[m] | [#.##]
or
-999.99 – for no data | -999.99 | Total depth of the core or height of the outcrop |
| **SMPDEPTH** | Float
[m] | [#.##]
or
-999.99 – for no data | 1.35 | Depth below the surface from which sample was extracted |
| **MATERIAL** | Integer | 1 - Sand
2 - Silt | 0 | Type of stratigraphic unit sampled |
<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUMAGE</td>
<td>Float</td>
<td>Published luminescence age</td>
</tr>
<tr>
<td>LUMERR</td>
<td>Float</td>
<td>Published luminescence age error</td>
</tr>
<tr>
<td>LUMTYPE</td>
<td>String</td>
<td>Type of luminescence method used in age determination</td>
</tr>
<tr>
<td>MINERAL</td>
<td>String</td>
<td>Type of mineral analysed</td>
</tr>
<tr>
<td>SIZEMIN</td>
<td>Integer</td>
<td>Minimum grain size sampled</td>
</tr>
<tr>
<td>SIZEMAX</td>
<td>Integer</td>
<td>Maximum grain size sampled</td>
</tr>
<tr>
<td>PROTOCOL</td>
<td>String</td>
<td>Type of protocol used for luminescence dating</td>
</tr>
</tbody>
</table>

Luminescence chronology data

- **LUMAGE**: Float [ka] | [value] | 0.915 | Published luminescence age |
- **LUMERR**: Float [ka] | [value] | 0.090 | Published luminescence age error |
- **LUMTYPE**: String | OSL – Optically Stimulated Luminescence, TL – Thermoluminescence | OSL | Type of luminescence method used in age determination |
- **MINERAL**: String | Q – Quartz, F – Feldspar, PM – Polyminal (when grains are < 10 microns) | Q | Type of mineral analysed |
- **SIZEMIN**: Integer [µm] | [###] or -999 – for no data | 180 | Minimum grain size sampled |
- **SIZEMAX**: Integer [µm] | [###] or -999 – for no data | 212 | Maximum grain size sampled |
- **PROTOCOL**: String | OSL: SAR – Single Aliquot Regenerative, SGR – Single Grain Regenerative, MA – Multi-grain Multiple Aliquot Additive Dose, TL: AS – ‘Australian Slide’, MAR – Multiple Aliquot Regenerative, MAAD – Multiple Aliquot Additive Dose | SGR | Type of protocol used for luminescence dating |
<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| **RESCOR** | **String** | Y – Yes
N – No
Whether the residual correction was applied; mostly in TL |
| **AGEMODEL** | **String** | OSL:
CAM – Central Age Model
MAM – Minimum Age Model
FMM – Finite Mixture Model
MAX – Maximum Age Model
PDFG – Pdf Gaussian Age Model
TL:
Mean
ND – for no data
Type of age model applied for age determination |
| **PLAT_REG** | **String [°C]** | [range]
or
NA – not applicable, for OSL
Pre-heat plateau region, for TL only; not applicable to OSL |
| **AN_TEMP1** | **Integer [°C]** | [###]
or
-999 – for no data
Specific temperature at which analysis performed, for TL; or pre-heat temperature 1 for OSL |
| **AN_TEMP2** | **Integer [°C]** | [###]
or
-999 – for no data
Pre-heat temperature 2 for OSL, and from which analytical data was obtained for age determination |
| **NALIQUOTS** | **Integer** | [value]
or
-999 – for no data
Number of aliquots measured in either TL or OSL |
| **NGR_MEAS** | **Integer** | [value]
Or
-999 – not applicable for all the other techniques and methods than SGR OSL
Number of grains measured during the analysis; SGR protocol in OSL only |
| **NGR_ACC** | **Integer** | -999 – not applicable for all the other techniques and methods than SGR OSL
Number of grains accepted after the analysis; SGR protocol in OSL only |
| **EQUIVDOSE** | Float | [value] | 3.790 | Equivalent dose (ED) or Dose equivalent (De) in OSL; Palaeodose in TL, used for age determination |
| **ED_ERR** | Float | [value] | 0.200 | Published error for the dose |
| **ED_SAT** | Float | [value] | -999.99 | Equivalent dose (ED) for saturated age; mostly in TL |
| **ED_SATERR** | Float | [value] | -999.99 | Published error for saturated age |
| **OD** | Float | [%] | -999.99 | Overdispersion, value representing spread of data in aliquot or single grain data |
| **OD_ERR** | Float | [%] | -999.99 | Published error for overdispersion |

Radiation dose data

<p>| DOSERATE | Float | [Gy/ka] | 0.004 | Dose rate, representing total dose of radiation received by the sample (in OSL) or annual radiation dose (in TL) |
| DR_ERR | Float | [Gy/ka] | 0.000 | Published error for the dose rate |
| K_CONTENT | Float | [%] | -999.99 | Potassium (K) content within the sample |
| K_CONTERR | Float | [%] | -999.99 | Published error for potassium content |
| RB_CONTENT | Float | [ppm] | -999.99 | Rubidium (Rb) content, mainly provided in TL data set |
| U_TH | Float | [Bq/kg] | -999.99 | Elemental content expressing activity of radioactive elements (specific activity), mainly used in TL |</p>
<table>
<thead>
<tr>
<th>Substance</th>
<th>Type</th>
<th>Formula</th>
<th>Unit</th>
<th>Value</th>
<th>Published error for (U + Th) specific activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U)</td>
<td>Float</td>
<td>[Bq/kg]</td>
<td>([\text{value}]) or -999.99 – for no data</td>
<td>-999.99</td>
<td>Published error for (U + Th) specific activity</td>
</tr>
<tr>
<td>(U)</td>
<td>Float</td>
<td>[Bq/kg]</td>
<td>([\text{value}]) or -999.99 – for no data</td>
<td>36.00</td>
<td>(^{238}U) content from High Resolution Gamma Spectrometry (HRGS)</td>
</tr>
<tr>
<td>(U)</td>
<td>Float</td>
<td>[Bq/kg]</td>
<td>([\text{value}]) or -999.99 – for no data</td>
<td>31.40</td>
<td>(^{226}Ra) content from High Resolution Gamma Spectrometry (HRGS)</td>
</tr>
<tr>
<td>(RA226)</td>
<td>Float</td>
<td>[Bq/kg]</td>
<td>([\text{value}]) or -999.99 – for no data</td>
<td>0.20</td>
<td>Published error value</td>
</tr>
<tr>
<td>(PB210)</td>
<td>Float</td>
<td>[Bq/kg]</td>
<td>([\text{value}]) or -999.99 – for no data</td>
<td>1.60</td>
<td>Published error value</td>
</tr>
<tr>
<td>(TH232)</td>
<td>Float</td>
<td>[Bq/kg]</td>
<td>([\text{value}]) or -999.99 – for no data</td>
<td>59.20</td>
<td>(^{232}Th) content from High Resolution Gamma Spectrometry (HRGS)</td>
</tr>
<tr>
<td>(K40)</td>
<td>Float</td>
<td>[Bq/kg]</td>
<td>([\text{value}]) or -999.99 – for no data</td>
<td>758.00</td>
<td>(^{40}K) content from High Resolution Gamma Spectrometry (HRGS)</td>
</tr>
<tr>
<td>(K40)</td>
<td>Float</td>
<td>[Bq/kg]</td>
<td>([\text{value}]) or -999.99 – for no data</td>
<td>12.00</td>
<td>Published error value</td>
</tr>
</tbody>
</table>

Uranium (U) content in the sample.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Value or -999.99 – for no data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_ERR</td>
<td>Float [Bq/kg]</td>
<td>[value] or -999.99 – for no data</td>
<td>Published error for uranium content</td>
</tr>
<tr>
<td>TH</td>
<td>Float [ppm]</td>
<td>[value] or -999.99 – for no data</td>
<td>Thorium (Th) content in the sample</td>
</tr>
<tr>
<td>TH_ERR</td>
<td>Float [ppm]</td>
<td>[value] or -999.99 – for no data</td>
<td>Published error for thorium content</td>
</tr>
<tr>
<td>ALPHA</td>
<td>Float [Gy/ka]</td>
<td>[value] or -999.99 – for no data</td>
<td>Measured or assumed alpha radiation values used for age determination</td>
</tr>
<tr>
<td>ALPHA_ERR</td>
<td>Float [Gy/ka]</td>
<td>[value] or -999.99 – for no data</td>
<td>Published error value</td>
</tr>
<tr>
<td>BETA</td>
<td>Float [Gy/ka]</td>
<td>[value] or -999.99 – for no data</td>
<td>Measured beta radiation values used for age determination</td>
</tr>
<tr>
<td>BETA_ERR</td>
<td>Float [Gy/ka]</td>
<td>[value] or -999.99 – for no data</td>
<td>Published error value</td>
</tr>
<tr>
<td>GAMMA</td>
<td>Float [Gy/ka]</td>
<td>[value] or -999.99 – for no data</td>
<td>Measured gamma radiation values used for age determination</td>
</tr>
<tr>
<td>GAMMA_ERR</td>
<td>Float [Gy/ka]</td>
<td>[value] or -999.99 – for no data</td>
<td>Published error value</td>
</tr>
<tr>
<td>COSMIC</td>
<td>Float [Gy/ka]</td>
<td>[value] or -999.99 – for no data</td>
<td>Cosmic ray contribution to the dose of radiation received by the sample</td>
</tr>
<tr>
<td>COSMIC_ERR</td>
<td>Float [Gy/ka]</td>
<td>[value] or -999.99 – for no data</td>
<td>Published error value</td>
</tr>
<tr>
<td>H2O</td>
<td>Float [%]</td>
<td>[value] or -999.99 – for no data</td>
<td>Water content in the sample</td>
</tr>
<tr>
<td>Field</td>
<td>Type</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>H2O_ERR</td>
<td>Float</td>
<td>Published error value</td>
<td>-999.99 – for no data</td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| DRMETHOD | String| LAB – dose rate data acquired only true analytical method
FIELD + LAB – dose rate data acquired by field and lab measurements | LAB | Dose rate method of data acquisition |
| TSAC | String| Y – Yes
N – No
NA – not applicable | N | Thick-source alpha counting; OSL and TL |
| BETA | String| Y – Yes
N – No
NA – not applicable | N | Beta particle counting, mainly OSL |
| HRGS | String| Y – Yes
N – No
NA – not applicable | Y | High resolution gamma spectrometry |
| ICP_MS_OES | String| Y – Yes
N – No
NA – not applicable | N | ICP-MS/ICP-OES for neutron activation |
| FP_TSAC | String| Y – Yes
N – No
NA – not applicable | NA | Flame Photometry paired with thick-source alpha counting; TL only |
| DOSERECOV | String| Y – Yes
N – No
NA – not applicable | N | Whether dose recovery was applied during age determination |