Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

Journal metrics

  • IF value: 10.951 IF 10.951
  • IF 5-year value: 9.899 IF 5-year
    9.899
  • CiteScore value: 9.74 CiteScore
    9.74
  • SNIP value: 3.111 SNIP 3.111
  • IPP value: 8.99 IPP 8.99
  • SJR value: 5.229 SJR 5.229
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 38 Scimago H
    index 38
  • h5-index value: 33 h5-index 33
ESSD | Articles | Volume 10, issue 4
Earth Syst. Sci. Data, 10, 2279–2293, 2018
https://doi.org/10.5194/essd-10-2279-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Syst. Sci. Data, 10, 2279–2293, 2018
https://doi.org/10.5194/essd-10-2279-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  14 Dec 2018

14 Dec 2018

Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset

Johannes Mülmenstädt et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Download
Short summary
One of the key pieces of information about a cloud is how high its base is. Unlike cloud top, cloud base is hard to observe from a satellite perspective – the cloud blocks the view. But without using satellites, it is difficult to compile global datasets. Here we describe how we worked around the limitations of a cloud-detecting laser satellite to observe global cloud base heights. This dataset will expand our knowledge of the cloudy atmosphere and its interaction with the planetary surface.
One of the key pieces of information about a cloud is how high its base is. Unlike cloud top,...
Citation