Journal metrics

Journal metrics

  • IF value: 8.792 IF 8.792
  • IF 5-year value: 8.414 IF 5-year 8.414
  • CiteScore value: 8.18 CiteScore 8.18
  • SNIP value: 2.620 SNIP 2.620
  • SJR value: 4.885 SJR 4.885
  • IPP value: 7.67 IPP 7.67
  • h5-index value: 28 h5-index 28
  • Scimago H index value: 24 Scimago H index 24
Earth Syst. Sci. Data, 10, 235-249, 2018
https://doi.org/10.5194/essd-10-235-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Review article
01 Feb 2018
seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day
Cristian Lussana1, Tuomo Saloranta2, Thomas Skaugen2, Jan Magnusson2, Ole Einar Tveito1, and Jess Andersen2 1Norwegian Meteorological Institute, Oslo, Norway
2Norwegian Water Resources and Energy Directorate, Oslo, Norway
Abstract. The conventional climate gridded datasets based on observations only are widely used in atmospheric sciences; our focus in this paper is on climate and hydrology. On the Norwegian mainland, seNorge2 provides high-resolution fields of daily total precipitation for applications requiring long-term datasets at regional or national level, where the challenge is to simulate small-scale processes often taking place in complex terrain. The dataset constitutes a valuable meteorological input for snow and hydrological simulations; it is updated daily and presented on a high-resolution grid (1 km of grid spacing). The climate archive goes back to 1957. The spatial interpolation scheme builds upon classical methods, such as optimal interpolation and successive-correction schemes. An original approach based on (spatial) scale-separation concepts has been implemented which uses geographical coordinates and elevation as complementary information in the interpolation. seNorge2 daily precipitation fields represent local precipitation features at spatial scales of a few kilometers, depending on the station network density. In the surroundings of a station or in dense station areas, the predictions are quite accurate even for intense precipitation. For most of the grid points, the performances are comparable to or better than a state-of-the-art pan-European dataset (E-OBS), because of the higher effective resolution of seNorge2. However, in very data-sparse areas, such as in the mountainous region of southern Norway, seNorge2 underestimates precipitation because it does not make use of enough geographical information to compensate for the lack of observations. The evaluation of seNorge2 as the meteorological forcing for the seNorge snow model and the DDD (Distance Distribution Dynamics) rainfall–runoff model shows that both models have been able to make profitable use of seNorge2, partly because of the automatic calibration procedure they incorporate for precipitation. The seNorge2 dataset 1957–2015 is available at https://doi.org/10.5281/zenodo.845733. Daily updates from 2015 onwards are available at http://thredds.met.no/thredds/catalog/metusers/senorge2/seNorge2/provisional_archive/PREC1d/gridded_dataset/catalog.html.

Citation: Lussana, C., Saloranta, T., Skaugen, T., Magnusson, J., Tveito, O. E., and Andersen, J.: seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day, Earth Syst. Sci. Data, 10, 235-249, https://doi.org/10.5194/essd-10-235-2018, 2018.
Download
Short summary
The observational gridded climate datasets are among the primary sources of information for climate analysis and monitoring. The seNorge2 high-resolution dataset of daily total precipitation (1957–2017) constitutes a valuable meteorological input for snow and hydrological simulations which are routinely conducted over Norway for research and to support operational applications for civil protection purposes. The dataset and the seNorge2 software are publicly available for download.
The observational gridded climate datasets are among the primary sources of information for...
Share