Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

Journal metrics

  • IF value: 8.792 IF 8.792
  • IF 5-year value: 8.414 IF 5-year 8.414
  • CiteScore value: 8.18 CiteScore 8.18
  • SNIP value: 2.620 SNIP 2.620
  • SJR value: 4.885 SJR 4.885
  • IPP value: 7.67 IPP 7.67
  • h5-index value: 28 h5-index 28
  • Scimago H index value: 24 Scimago H index 24
Volume 10, issue 1
Earth Syst. Sci. Data, 10, 525-548, 2018
https://doi.org/10.5194/essd-10-525-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Syst. Sci. Data, 10, 525-548, 2018
https://doi.org/10.5194/essd-10-525-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  13 Mar 2018

13 Mar 2018

Seasonal evolution of soil and plant parameters on the agricultural Gebesee test site: a database for the set-up and validation of EO-LDAS and satellite-aided retrieval models

Sina C. Truckenbrodt and Christiane C. Schmullius Sina C. Truckenbrodt and Christiane C. Schmullius
  • Fernerkundung, Institut für Geographie, Friedrich-Schiller-Universität Jena, Löbdergraben 32, 07743 Jena, Germany

Abstract. Ground reference data are a prerequisite for the calibration, update, and validation of retrieval models facilitating the monitoring of land parameters based on Earth Observation data. Here, we describe the acquisition of a comprehensive ground reference database which was created to test and validate the recently developed Earth Observation Land Data Assimilation System (EO-LDAS) and products derived from remote sensing observations in the visible and infrared range. In situ data were collected for seven crop types (winter barley, winter wheat, spring wheat, durum, winter rape, potato, and sugar beet) cultivated on the agricultural Gebesee test site, central Germany, in 2013 and 2014. The database contains information on hyperspectral surface reflectance factors, the evolution of biophysical and biochemical plant parameters, phenology, surface conditions, atmospheric states, and a set of ground control points. Ground reference data were gathered at an approximately weekly resolution and on different spatial scales to investigate variations within and between acreages. In situ data collected less than 1 day apart from satellite acquisitions (RapidEye, SPOT 5, Landsat-7 and -8) with a cloud coverage  ≤ 25% are available for 10 and 15 days in 2013 and 2014, respectively. The measurements show that the investigated growing seasons were characterized by distinct meteorological conditions causing interannual variations in the parameter evolution. Here, the experimental design of the field campaigns, and methods employed in the determination of all parameters, are described in detail. Insights into the database are provided and potential fields of application are discussed. The data will contribute to a further development of crop monitoring methods based on remote sensing techniques. The database is freely available at PANGAEA (https://doi.org/10.1594/PANGAEA.874251).

Download
Short summary
A comprehensive ground reference database for the set-up and validation of models for the satellite-aided retrieval of crop characteristics is presented. Data on the evolution of biophysical and biochemical plant parameters were collected for seven crop types on the Gebesee test site (central Germany) in 2013 and 2014. Field work was carried out on a weekly basis and close to satellite acquisitions. The data reflects spatial heterogeneity and interannual phenological variability.
A comprehensive ground reference database for the set-up and validation of models for the...
Citation
Share