Journal cover Journal topic
Earth System Science Data The Data Publishing Journal
Earth Syst. Sci. Data, 10, 711-725, 2018
https://doi.org/10.5194/essd-10-711-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Review article
09 Apr 2018
A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet
Hafeez Jeofry1,2, Neil Ross3, Hugh F. J. Corr4, Jilu Li5, Mathieu Morlighem6, Prasad Gogineni7, and Martin J. Siegert1 1Grantham Institute and Department of Earth Science and Engineering, Imperial College London, South Kensington, London, UK
2School of Marine Science and Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
3School of Geography, Politics and Sociology, Newcastle University, Claremont Road, Newcastle Upon Tyne, UK
4British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
5Center for the Remote Sensing of Ice Sheets, University of Kansas, Lawrence, Kansas, USA
6Department of Earth System Science, University of California, Irvine, Irvine, California, USA
7Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, USA
Abstract. We present a new digital elevation model (DEM) of the bed, with a 1 km gridding, of the Weddell Sea (WS) sector of the West Antarctic Ice Sheet (WAIS). The DEM has a total area of ∼ 125 000 km2 covering the Institute, Möller and Foundation ice streams, as well as the Bungenstock ice rise. In comparison with the Bedmap2 product, our DEM includes new aerogeophysical datasets acquired by the Center for Remote Sensing of Ice Sheets (CReSIS) through the NASA Operation IceBridge (OIB) program in 2012, 2014 and 2016. We also improve bed elevation information from the single largest existing dataset in the region, collected by the British Antarctic Survey (BAS) Polarimetric radar Airborne Science Instrument (PASIN) in 2010–2011, from the relatively crude measurements determined in the field for quality control purposes used in Bedmap2. While the gross form of the new DEM is similar to Bedmap2, there are some notable differences. For example, the position and size of a deep subglacial trough (∼ 2 km below sea level) between the ice-sheet interior and the grounding line of the Foundation Ice Stream have been redefined. From the revised DEM, we are able to better derive the expected routing of basal water and, by comparison with that calculated using Bedmap2, we are able to assess regions where hydraulic flow is sensitive to change. Given the potential vulnerability of this sector to ocean-induced melting at the grounding line, especially in light of the improved definition of the Foundation Ice Stream trough, our revised DEM will be of value to ice-sheet modelling in efforts to quantify future glaciological changes in the region and, from this, the potential impact on global sea level. The new 1 km bed elevation product of the WS sector can be found at https://doi.org/10.5281/zenodo.1035488.


Please read the corrigendum first before accessing the article.

Citation: Jeofry, H., Ross, N., Corr, H. F. J., Li, J., Morlighem, M., Gogineni, P., and Siegert, M. J.: A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet, Earth Syst. Sci. Data, 10, 711-725, https://doi.org/10.5194/essd-10-711-2018, 2018.
Download
Short summary
Accurately characterizing the complexities of the ice-sheet dynamic specifically close to the grounding line across the Weddell Sea (WS) sector in the ice-sheet models provides challenges to the scientific community. Our main objective is to comprehend these complexities, adding accuracy to the projection of future ice-sheet dynamics. Therefore, we have developed a new bed elevation digital elevation model across the WS sector, which will be of value to ice-sheet modelling experiments.
Accurately characterizing the complexities of the ice-sheet dynamic specifically close to the...
Share