Supplement of Earth Syst. Sci. Data, 11, 1515–1529, 2019
https://doi.org/10.5194/essd-11-1515-2019-supplement
© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Global distribution of nearshore slopes with implications for coastal retreat

Panagiotis Athanasiou et al.

Correspondence to: Panagiotis Athanasiou (panos.athanasiou@deltas.nl)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S 1: Global map of error and warning tags. Tags 1, 3, 4, 5 and 7 are error tags (i.e. failure of slope calculation) while tags 2, 6 and 8 are warning tags (i.e. imperfections in elevation profile).

Figure S 2: Histogram of the probability of occurrence of each error/warning for all the transects.
Figure S 3: Map of nearshore slopes for North America. Red colours indicate steeper slopes while blue colours milder slopes. Note that in the colour scale the slopes have been grouped in non-equidistant increments in order to highlight the spatial differences.
Figure S 4: Map of nearshore slopes for South America. Red colours indicate steeper slopes while blue colours milder slopes. Note that in the colour scale the slopes have been grouped in non-equidistant increments in order to highlight the spatial differences.
Figure S 5: Map of nearshore slopes for Europe. Red colours indicate steeper slopes while blue colours milder slopes. Note that in the colour scale the slopes have been grouped in non-equidistant increments in order to highlight the spatial differences.
Figure S 6: Map of nearshore slopes for Africa. Red colours indicate steeper slopes while blue colours milder slopes. Note that in the colour scale the slopes have been grouped in non-equidistant increments in order to highlight the spatial differences.
Figure S 7: Map of nearshore slopes for Asia. Red colours indicate steeper slopes while blue colours milder slopes. Note that in the colour scale the slopes have been grouped in non-equidistant increments in order to highlight the spatial differences.
Figure S 8: Map of nearshore slopes for Oceania. Red colours indicate steeper slopes while blue colours milder slopes. Note that in the colour scale the slopes have been grouped in non-equidistant increments in order to highlight the spatial differences.

Figure S 9: Map of d_c calculated in the present study (left) versus the ones calculated at the U.S coast by USACE (Brutsché et al., 2016) (right).
Validation of the predicted d_c against the estimated d_c at the U.S coast by USACE (Brutsché et al., 2016). The validation was performed for the closest USACE point of each offshore point of the present study.

Figure S 11: Reclassification of the 20 EUROSION (A-Z) geomorphological classes to the 4 MCD classes (1-4).
Figure S 12: Histogram of normalized nearshore slope difference for all the transects (blue) and sandy transects (red) for four changes in the depth of closure (-20%, -10%, 10% and 20%). The data have been grouped in bars in increments of 10%.
Figure S 13: Global maps of normalized nearshore slope difference for all the transects for four changes in the depth of closure (-20%, -10%, 10% and 20% from top to bottom).