Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

Journal metrics

  • IF value: 10.951 IF 10.951
  • IF 5-year value: 9.899 IF 5-year
    9.899
  • CiteScore value: 9.74 CiteScore
    9.74
  • SNIP value: 3.111 SNIP 3.111
  • IPP value: 8.99 IPP 8.99
  • SJR value: 5.229 SJR 5.229
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 38 Scimago H
    index 38
  • h5-index value: 33 h5-index 33
ESSD | Articles | Volume 11, issue 2
Earth Syst. Sci. Data, 11, 797–821, 2019
https://doi.org/10.5194/essd-11-797-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Syst. Sci. Data, 11, 797–821, 2019
https://doi.org/10.5194/essd-11-797-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Review article 12 Jun 2019

Review article | 12 Jun 2019

Merits of novel high-resolution estimates and existing long-term estimates of humidity and incident radiation in a complex domain

Helene Birkelund Erlandsen et al.

Related authors

Downscaling probability of long heatwaves based on seasonal mean daily maximum temperatures
Rasmus E. Benestad, Bob van Oort, Flavio Justino, Frode Stordal, Kajsa M. Parding, Abdelkader Mezghani, Helene B. Erlandsen, Jana Sillmann, and Milton E. Pereira-Flores
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 37–52, https://doi.org/10.5194/ascmo-4-37-2018,https://doi.org/10.5194/ascmo-4-37-2018, 2018
Short summary

Related subject area

Atmosphere – Meteorology
The Tall Tower Dataset: a unique initiative to boost wind energy research
Jaume Ramon, Llorenç Lledó, Núria Pérez-Zanón, Albert Soret, and Francisco J. Doblas-Reyes
Earth Syst. Sci. Data, 12, 429–439, https://doi.org/10.5194/essd-12-429-2020,https://doi.org/10.5194/essd-12-429-2020, 2020
Short summary
A dataset of tracer concentrations and meteorological observations from the Bolzano Tracer EXperiment (BTEX) to characterize pollutant dispersion processes in an Alpine valley
Marco Falocchi, Werner Tirler, Lorenzo Giovannini, Elena Tomasi, Gianluca Antonacci, and Dino Zardi
Earth Syst. Sci. Data, 12, 277–291, https://doi.org/10.5194/essd-12-277-2020,https://doi.org/10.5194/essd-12-277-2020, 2020
Short summary
Statistical downscaling of water vapour satellite measurements from profiles of tropical ice clouds
Giulia Carella, Mathieu Vrac, Hélène Brogniez, Pascal Yiou, and Hélène Chepfer
Earth Syst. Sci. Data, 12, 1–20, https://doi.org/10.5194/essd-12-1-2020,https://doi.org/10.5194/essd-12-1-2020, 2020
Short summary
Iberia01: a new gridded dataset of daily precipitation and temperatures over Iberia
Sixto Herrera, Rita Margarida Cardoso, Pedro Matos Soares, Fátima Espírito-Santo, Pedro Viterbo, and José Manuel Gutiérrez
Earth Syst. Sci. Data, 11, 1947–1956, https://doi.org/10.5194/essd-11-1947-2019,https://doi.org/10.5194/essd-11-1947-2019, 2019
Short summary
1 km monthly temperature and precipitation dataset for China from 1901 to 2017
Shouzhang Peng, Yongxia Ding, Wenzhao Liu, and Zhi Li
Earth Syst. Sci. Data, 11, 1931–1946, https://doi.org/10.5194/essd-11-1931-2019,https://doi.org/10.5194/essd-11-1931-2019, 2019
Short summary

Cited articles

Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013. a
Almeida, A. C. and Landsberg, J. J.: Evaluating methods of estimating global radiation and vapor pressure deficit using a dense network of automatic weather stations in coastal Brazil, Agr. Forest Meteorol., 118, 237–250, https://doi.org/10.1016/S0168-1923(03)00122-9, 2003. a
Bohn, T. J., Livneh, B., Oyler, J. W., Running, S. W., Nijssen, B., and Lettenmaier, D. P.: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models, Agr. Forest Meteorol., 176, 38–49, https://doi.org/10.1016/j.agrformet.2013.03.003, 2013. a, b, c, d, e, f, g, h
Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez, M.: MERRA-2: Initial evaluation of the climate Technical Report Series on Global Modeling and Data Assimilation, Tech. rep., NASA/TM–2015-104606, 2015. a, b
Bosilovich, M. G., Robertson, F. R., Takacs, L., Molod, A., and Mocko, D.: Atmospheric water balance and variability in the MERRA-2 reanalysis, J. Climate, 30, 1177–1196, https://doi.org/10.1175/JCLI-D-16-0338.1, 2017. a
Download
Short summary
Robust estimates of runoff, snow, and evaporation rely on high-quality estimates of incoming solar and thermal radiation at the surface and near surface humidity. Taking advantage of the physical soundness of a numerical weather reanalysis and the preciseness and spatial resolution of a national gridded temperature data set, new estimates of these variables are presented for Norway. Further, existing data sets and observations are compared, emphasizing daily correlation, trends, and gradients.
Robust estimates of runoff, snow, and evaporation rely on high-quality estimates of incoming...
Citation