Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

Journal metrics

  • IF value: 8.792 IF 8.792
  • IF 5-year value: 8.414 IF 5-year 8.414
  • CiteScore value: 8.18 CiteScore 8.18
  • SNIP value: 2.620 SNIP 2.620
  • SJR value: 4.885 SJR 4.885
  • IPP value: 7.67 IPP 7.67
  • h5-index value: 28 h5-index 28
  • Scimago H index value: 24 Scimago H index 24
Volume 9, issue 2
Earth Syst. Sci. Data, 9, 809-831, 2017
https://doi.org/10.5194/essd-9-809-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Earth Syst. Sci. Data, 9, 809-831, 2017
https://doi.org/10.5194/essd-9-809-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

  06 Nov 2017

06 Nov 2017

Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE

Matthew Toohey1 and Michael Sigl2,3 Matthew Toohey and Michael Sigl
  • 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
  • 2Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
  • 3Oeschger Centre for Climate Change Research, 3012 Bern, Switzerland

Abstract. The injection of sulfur into the stratosphere by explosive volcanic eruptions is the cause of significant climate variability. Based on sulfate records from a suite of ice cores from Greenland and Antarctica, the eVolv2k database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events from 500BCE to 1900CE, constituting an update of prior reconstructions and an extension of the record by 1000 years. The database incorporates improvements to the ice core records (in terms of synchronisation and dating) and refinements to the methods used to estimate VSSI from ice core records, and it includes first estimates of the random uncertainties in VSSI values. VSSI estimates for many of the largest eruptions, including Samalas (1257), Tambora (1815), and Laki (1783), are within 10% of prior estimates. A number of strong events are included in eVolv2k which are largely underestimated or not included in earlier VSSI reconstructions, including events in 540, 574, 682, and 1108CE. The long-term annual mean VSSI from major volcanic eruptions is estimated to be  ∼ 0.5Tg [S] yr−1,  ∼ 50% greater than a prior reconstruction due to the identification of more events and an increase in the magnitude of many intermediate events. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the eVolv2k VSSI estimates, and the resulting global mean SAOD is found to be similar (within 33%) to a prior reconstruction for most of the largest eruptions. The long-term (500BCE–1900CE) average global mean SAOD estimated from the eVolv2k VSSI estimates including a constant background injection of stratospheric sulfur is  ∼ 0.014, 30% greater than a prior reconstruction. These new long-term reconstructions of past VSSI and SAOD variability give context to recent volcanic forcing, suggesting that the 20th century was a period of somewhat weaker than average volcanic forcing, with current best estimates of 20th century mean VSSI and SAOD values being 25 and 14% less, respectively, than the mean of the 500BCE to 1900CE period. The reconstructed VSSI and SAOD data are available at https://doi.org/10.1594/WDCC/eVolv2k_v2.

Download
Short summary
Based on ice core sulfate records from Greenland and Antarctica, the eVolv2k database provides volcanic stratospheric sulfur injection estimates from 500 BCE to 1900 CE along with reconstructed aerosol optical properties needed for climate model simulations. The eVolv2k database constitutes a significant update to prior ice-core-based volcanic forcing reconstructions for climate models, improving the accuracy of volcanic forcing, especially before 1250 CE, and extending the record by 1000 years.
Based on ice core sulfate records from Greenland and Antarctica, the eVolv2k database provides...
Citation
Share